segunda-feira, 19 de fevereiro de 2007

Bons Rapazes Terminam em Primeiro – Parte 2

Continuação do texto Bons Rapazes Terminam em Primeiro – Parte 1(1).

O Dilema do Prisioneiro Iterado

O jogo iterado é basicamente o mesmo que o não iterado, mas repetido um número indefinido de vezes com os mesmos jogadores. Mais uma vez jogamos os dois, com um banqueiro sentado no meio. Uma vez mais, temos cada um, uma mão de apenas duas cartas, marcadas com COOPERA e DESERTA. Mais uma vez nós jogamos uma ou outra carta, e o banqueiro paga ou recebe em conformidade com as regras previamente definidas. Mas agora, em vez de ser este o fim do jogo, nós recolhemos as nossas cartas e preparamo-nos para outra ronda. As rondas sucessivas do jogo dão-nos a oportunidade de acumular confiança ou desconfiança, apaziguar ou reciprocar, perdoar ou vingar. Num jogo indefinidamente longo, o ponto importante está em podermos ambos ganhar às custas do banqueiro, em vez de às custas um do outro.

Após as dez rondas do jogo, eu poderia teoricamente ter ganhado até $5.000, mas só se você tivesse sido extraordinariamente tolo (ou santo) e jogado COOPERA constantemente, apesar do facto de eu desertar consistentemente. De forma mais realista, é fácil para cada um de nós colectar $3.000 do banqueiro, se ambos jogar-mos COOPERA em todas as dez rondas do jogo. Para isso nós não temos de ser particularmente santos, porque ambos podemos ver, dos movimentos passados do outro, que nele se pode confiar. Podemos, com efeito, policiar esse comportamento. Outra coisa muito provável de acontecer, é nenhum de nós confiar no outro: ambos jogaremos DESERTA em todas as dez rondas do jogo, e o banqueiro ganhará $100 como penalização para cada um de nós. O mais provável no entanto, será confiarmos parcialmente um no outro, e cada um jogará COOPERA ou DESERTA de forma mista, acabando com uma soma intermediária de dinheiro.

Os pássaros do Capítulo 10(2) que retiravam carrapatos de cada um, estavam a jogar o jogo do Dilema do Prisioneiro Iterado. Como assim? É importante, lembra-se de que, para um pássaro tirar os carrapatos do topo da própria cabeça, necessita de um companheiro para o fazer. Pareceria justo este retornar o favor mais tarde. Mas este serviço custa tempo e energia ao pássaro, embora não muito. Se um pássaro poder escapar às consequências traindo o outro - com os seus próprios carrapatos retirados recusando-se a reciprocar - ganha todos os benefícios sem pagar os custos. Classifique os resultados, e verá que de facto estamos perante um verdadeiro jogo do Dilema do Prisioneiro. Ambos a cooperar (puxando os carrapatos um do outro) é bastante bom, mas há ainda a tentação de fazer melhor, recusando-se a pagar os custos de reciprocar. Ambos desertam (recusando-se a retirar carrapatos) é bastante mau, mas não tão mau como o investir de esforço no retirar dos do outro e acabar mesmo assim infestado. A matriz de desfecho é a da Figura 1.


Figura 1. O jogo da remoção do carrapato: As minhas recompensas segundo vários cenários.

Mas isto é apenas um exemplo. Quanto mais nele se pensa, mais se percebe que a vida é nublada com jogos do Dilema do Prisioneiro Iterado, não só a vida humana mas a animal e a das plantas também. Vida vegetal? Sim, por que não? Lembre-se de que nós não estamos a falar de estratégias conscientes (embora por vezes o possam ser), mas sim de estratégias no sentido de ‘Maynard Smith’(3), estratégias do tipo das pré-programadas por genes. Mais tarde falaremos de plantas, de vários animais e mesmo de bactérias, todos jogando o jogo do Dilema do Prisioneiro Iterado. Entretanto, exploraremos de forma mais plena o que há de tão importante sobre a iteração.

Ao contrário do simples jogo, em que a jogada previsível é a do DESERTA como a única jogada racional, a versão iterada oferece um grande conjunto de possíveis estratégias. No jogo simples só há duas estratégias possíveis, COOPERA ou DESERTA. A iteração, permite no entanto, muitas estratégias concebíveis, e não é de modo algum óbvio qual delas a melhor. O exemplo seguinte, por exemplo, é somente um entre milhares ‘coopera a maior parte do tempo, mas nuns casuais 10% de rondas deserta’. As estratégias poderão talvez ser condicionais relativamente à história passada do jogo. O meu ‘Grudger’(4) é um exemplo disso; tem uma memória boa para rostos, e apesar de fundamentalmente cooperativo, deserta se o outro jogador desertou alguma vez antes. Outras estratégias poderão ser mais clementes e de memória mais curta.

Claramente as estratégias disponíveis no jogo iterado estão limitadas apenas pelo nosso engenho. Poderemos concluir qual a melhor? Esta foi a tarefa que Axelrod(5) atribui a si próprio. Teve a ideia interessante de iniciar uma competição, e anunciou-a para os peritos em teoria de jogos submeterem as suas estratégias. As estratégias, são-no no sentido, de regras de acção pré-programadas, sendo então apropriado para os concorrentes entregar essas regras em linguagem de máquina. Catorze estratégias foram submetidas. Para uma mais clara comparação Axelrod adicionou uma quinta estratégia, chamada Casual, que joga COOPERA ou DESERTA casualmente, e servido como um tipo de base ‘não estratégia’: se uma estratégia não conseguir fazer melhor que a Casual, então deve ser bastante má.

Tit for Tat – Olho por Olho e Dente por Dente

Axelrod traduziu todas as 15 estratégias para uma linguagem de programação comum, e testou-as umas contra as outras num grande computador. Cada estratégia esteve frente a frente com cada uma das outras (incluindo contra si própria) no jogo o Dilema do Prisioneiro Iterado. Como haviam 15 estratégias, tinha-mos 15 x 15 ou 225 jogos distintos a decorrer no computador. Quando cada par tivesse concluído 200 movimentos de jogo, somavam-se as vitórias e assim determinado o vencedor.

Não estamos preocupados com qual a estratégia ganhadora contra qualquer oponente particular. O que importa, é saber qual a estratégia que acumulou mais ‘dinheiro’, somado ao longo de todos os seus 15 pares. ‘Dinheiro’ significa simplesmente ‘pontos’, ganhos de acordo com o seguinte esquema: Cooperação mútua, 3 pontos; Tentação para desertar, 5 pontos; Castigo pela deserção mútua, 1 ponto (equivalente a uma multa leve no nosso jogo anterior); Desfecho do papalvo, 0 pontos (equivalente a uma multa pesada no nosso jogo anterior).


Figura 2. O torneio de computador de
Axelrod: As minhas recompensas segundo vários cenários.

A pontuação máxima possível que qualquer estratégia pode alcançar é de 15.000 (200 rondas com 5 pontos, para cada um dos 15 oponentes). A pontuação mínima possível é de 0. É desnecessário dize-lo, mas nenhum destes dois extremos foi realizado. O máximo que uma estratégia pode realisticamente esperar ganhar dos seus 15 oponentes, não pode em média ser muito mais de que 600 pontos. Isso é o que dois jogadores recebem se ambos cooperarem constantemente, recebendo 3 pontos para cada uma das 200 rondas de jogo. Se um deles sucumbisse à tentação de desertar, muito provavelmente acabaria com menos de 600 pontos, por causa da retaliação por parte do outro jogador (a maioria das estratégias submetidas tiveram algum tipo de comportamento retaliativo que lhes foi embutido). Podemos usar os 600 pontos como uma espécie de fiel da balança para o jogo, e expressar todas as recompensas como uma porcentagem deste. Nesta escala é teoricamente possível ganhar até 166% (1.000 pontos), mas na prática nenhuma estratégia excedeu a contagem média de 600 pontos.

Lembre-se de que os ‘jogadores’ no torneio não eram seres humanos mas sim programas de computador, de estratégias pré-programadas. Os seus autores fizeram o mesmo papel que o dos genes, programando corpos (pense no programa informático de xadrez e no computador de Andrómeda do Capítulo 4(6)). Pode pensar nas estratégias como ‘procuradores’ miniaturizados dos seus autores. Na verdade, um autor poderia ter submetido mais de uma estratégia (embora tal pudesse resultar em vigarice – e por isso Axelrod presumivelmente não o tenha permitido – com um autor a ‘empacotar’ a competição com estratégias, por forma a receber os benefícios da cooperação sacrificial das outras).

Foram submetidas algumas estratégias engenhosas, embora fossem, naturalmente, muito menos engenhosas que os seus autores. A estratégia ganhadora, notavelmente, foi a mais simples e superficialmente a menos engenhosa de todas. Foi chamada de “Tit for Tat” (Olho por Olho e Dente por Dente), e foi submetida pelo professor Anatol Rapoport(7), um bem conhecido psicólogo e teórico de jogos de Toronto. Tit for Tat começa por cooperar no primeiro lance, e depois copia simplesmente o movimento prévio do outro jogador.

De que forma procede um jogo envolvendo a estratégia Tit for Tat? Como sempre, o que acontece depende do outro jogador. Suponha, primeiro, que o outro jogador é também um Tit for Tat (lembre-se que cada estratégia joga contra uma cópia de si, tal como contra as outras 14). Ambas as Tit for Tat começam por cooperar. No próximo lance, cada jogador copia o movimento prévio do outro, que foi COOPERA. Ambos continuam a COOPERAR até ao fim do jogo, e ambos acabam com a plena recompensa de 100% do fiel da balança (600 pontos).

Agora suponha que Tit for Tat joga contra uma estratégia chamada de Explorador Ingénuo. O Explorador Ingénuo na realidade não foi incorporado na competição de Axelrod, mas é apesar disso instrutivo. É na essência idêntico ao Tit for Tat, excepto, de vez em quando num movimento casual, digamos em cada dez lances, desertar gratuitamente e reivindicar o alto pagamento da Tentação. Até que o Explorador Ingénuo deserte, estes jogadores passam bem por dois Tit for Tat. Uma sequência longa mutuamente lucrativa de cooperação parece seguir o seu rumo, com uma contagem confortável de 100% do Fiel da Balança para ambos os jogadores. Mas repentinamente, sem aviso, diga-mos no oitavo movimento, o Explorador Ingénuo deserta. Tit for Tat, naturalmente, joga COOPERA neste movimento, e assim recebe o desfecho do Papalvo de 0 pontos. O Explorador Ingénuo parece ter feito bem, pois obteve 5 pontos nesse movimento. Mas no próximo movimento Tit for Tat irá ‘retaliar’. Joga DESERTA, simplesmente seguindo a sua regra de imitação do movimento prévio do oponente. O Explorador Ingénuo, entretanto, seguindo cegamente a sua própria regra de cópia, copia o anterior movimento COOPERA do seu oponente. Assim, sofre agora o desfecho do Papalvo de 0 pontos, enquanto Tit for Tat recebe os 5 pontos. No próximo movimento, o Explorador Ingénuo – embora se possa pensar, injustamente – ‘retalia’ contra Tit for Tat pela deserção anterior. E assim, a alternância continua. Durante este alternar ambos os jogadores receberão em média 2,5 pontos por movimento (a média de 5 e 0). Sendo este resultado, inferior aos 3 pontos que poderiam acumular constantemente pelo movimento de cooperação mútua (e, a propósito, esta é a razão para o ‘condição adicional’ deixada por explicar na página 204(8)). Então, quando o Explorador Ingénuo joga contra Tit for Tat, ambos recolhem menos pontos do que quando Tit for Tat joga contra outro Tit for Tat. E quando um Explorador Ingénuo joga contra outro Explorador Ingénuo, ambos conseguem, uma pontuação ainda pior, pois a deserção inicial tende a realizar-se mais cedo.

Considere agora outra estratégia, chamada de Explorador Arrependido. O Explorador Arrependido é como o Explorador Ingénuo, excepto na sua atitude de tomar passos activos por forma a evitar ciclos de recriminações alternadas. Para o fazer este necessita de uma ‘memória’ levemente mais longa que a de qualquer Tit for Tat ou Explorador Ingénuo. O Explorador Arrependido lembra-se de quando desertou espontaneamente, e se o resultado foi a retaliação imediata. Se assim foi, ele de forma arrependida permite que ao seu oponente ‘um golpe livre’ sem retaliar. Desta forma, elimina-se de raiz a possibilidade de ciclos de recriminação mútua. Se agora imaginar um jogo entre um Explorador Arrependido e um Tit for Tat, concluirá que rondas de retaliação mútua serão cortadas. A maioria do jogo é passado em cooperação mútua, com ambos os jogadores gozando uma recompensa generosa consequente. O Explorador Arrependido sai-se melhor contra um Tit for Tat do que contra um Explorador Ingénuo, embora não tão bem como um Tit for Tat contra si próprio.

Algumas das estratégias submetidas no torneio do Axelrod eram muito mais sofisticadas que o Explorador Arrependido ou o Explorador Ingénuo, mas também essas acabaram, em média, com menos pontos, do que o simples Tit for Tat. De facto, a menos bem sucedida de todas as estratégias (exceptuando-se a Casual) foi a mais elaborada. Foi submetida como ‘Nome retido’ - uma forma de alimentar agradáveis especulações: Algum antropónimo de uma eminência do Pentágono? O director da CIA? Henry Kissinger? O próprio Axelrod? Suponho que nunca saberemos.

Não é de todo interessante, examinar os detalhes de todas as estratégias particulares que foram submetidas. Isto não é um livro sobre o talento de programadores. Será mais interessante classificar as estratégias de acordo com certas categorias, e examina-las quanto ao seu êxito mais amplo. A categoria mais importante que Axelrod reconheceu foi ‘amável’. Uma estratégia amável, é definida como uma em que nunca se é o primeiro a desertar. Tit for Tat é um exemplo. É capaz de desertar, mas só o faz como retaliação. Tanto o Explorador Ingénuo como o Explorador Arrependido são estratégias maldosas, porque às vezes, embora raramente, desertam sem motivo (provocação). Das 15 estratégias submetidas a torneio, 8 eram amáveis. Significativamente, as 8 que ficaram no topo eram as mesmas 8 estratégias amáveis, as 7 maldosas ficaram-se bem para trás. Tit for Tat obteve uma média de 504,5 pontos: 84% do nosso Fiel da Balança de 600 pontos, uma boa soma. As outras estratégias amáveis somaram pouco menos, com contagens a variar entre 78,6% e 83,4%. Há um abismo grande entre esta contagem e os 66,8 % obtidos pelo ‘Graaskamp’, a mais bem sucedida de todas as estratégias maldosas. Parece bastante convincente que rapazes amáveis terminam bem neste jogo.

Outro termo técnico de Axelrod é ‘tolerância’. Uma estratégia diz-se tolerante quando, embora possa retaliar, possui uma memória curta. É rápida em deixar passar antigos prejuízos. Tit for Tat é uma estratégia tolerante. Esta retalia de forma seca no instante imediato, mas depois disso, faz desse passado, passado. Já o Grudger do Capítulo 10, é totalmente implacável. A sua memória mantém-se o jogo inteiro. Nunca se esquece, e mantém o rancor contra um jogador que tenha desertado, mesmo que só uma única vez. Uma estratégia formalmente idêntica à do Grudger foi submetida a torneio sob o nome de Friedman, e não se saiu particularmente bem. De todas as estratégias amáveis (note que é tecnicamente amáveis, embora seja totalmente intolerante), Grudger/Friedman ficou em penúltimo lugar. A razão pela qual as estratégias intolerantes não se saem muito bem, está no facto de não conseguirem quebrar ciclos de mútua retaliação, mesmo quando o seu oponente esteja “arrependido”.

É possível ser-se ainda mais tolerante que Tit for Tat. A estratégia Tit for Two Tats(9) permite duas deserções seguidas por parte dos seus oponentes antes de retaliar. Isto talvez possa parecer excessivamente virtuoso e magnânimo. Não obstante, Axelrod conclui que, se alguém a tivesse submetido, teria ganhado o torneio. E isto, por ser tão boa a evitar ciclos de mútua retaliação.

(a continuar)


(1) – Traduzido de http://www-static.cc.gatech.edu/~idris/Essays/Dawkins_The_Selfish_Gene.htm
(2) – http://seremosricos.blogspot.com/2007/01/bons-rapazes-terminam-em-primeiro-parte.html
(3) – John Maynard Smith, http://en.wikipedia.org/wiki/John_Maynard_Smith
(4) – Tratavam-se de pássaros que se ajudavam duma forma aparentemente altruísta, mas recusavam-se a ajudar (de forma rancorosa), indivíduos que previamente se tinham recusado ajudá-los.
(5) – Rober Axelrod, http://www-personal.umich.edu/~axe/
(6) – The Gene Machine, Richard Dawkins
(7) – Anatol Rapoport, http://en.wikipedia.org/wiki/Anatol_Rapoport
(8) – Condições do jogo o Dilema do Prisioneiro simples, http://seremosricos.blogspot.com/2007/01/bons-rapazes-terminam-em-primeiro-parte.html
(9) – Poderá ser traduzido como Um Olho por Dois ou Um Dente por Dois

sábado, 10 de fevereiro de 2007

Richard Dawkins – Uma Visão Exponencial – Parte 2/2

Continuação do texto Richard Dawkins – Uma Visão Exponencial – Parte 1.

O Rio que Saía do Éden. Capítulo 5 - A Bomba de Replicação (Dawkins - 1995)

A bomba de replicação que Dawkins refere no cabeçalho é a vida. Numa das minhas preferidas passagens de Dawkins, ele explica porque razão a humanidade é tão importante:

“Nós os seres humanos somos uma manifestação extremamente importante da bomba de replicação, porque é por nós - pelos nossos cérebros, pela nossa cultura simbólica e a pela nossa tecnologia - que a explosão pode prosseguir à próxima etapa e ecoar pelo espaço profundo.”

Para Dawkins, esta bomba de replicação, estimulada pela energia de nosso Sol, ajudará o nosso Sol “a tornar-se informação” de forma igualmente semelhante à das estrelas, como é dito, “a tornarem-se supernova”.

Dawkins continua, chamando a atenção que a nossa é a única bomba de replicação no universo, de que nós estamos cientes. Dawkins descreve a origem da bomba de replicação, que começou com o primeiro replicador há muitos biliões de anos atrás: “... O crescimento exponencial: quanto mais se tem, mais se obtém.”

Encontrei um argumento semelhante ao do “meme” de Dawkins, supernova, em “A Estrutura da Realidade” (no capítulo A Importância da Vida) por David Deutsch (1997), um contemporâneo de Dawkins na Universidade de Oxford. Deutsch, um físico, declara que “os Genes incorporam conhecimento nos seus nichos” e conclui que é a “sobrevivência do conhecimento” o atributo chave dos replicadores bem sucedidos.

Dawkins, que cunhou o termo “meme” no seu livro O Gene Egoísta, usa o exemplo de um cartão postal “correspondência em corrente” como uma forma de um replicador “meme”. As instruções para o cartão postal são:

“Faz seis cópias deste cartão e remete-os a seis amigos dentro de uma semana. Se o não fizeres, um feitiço cairá sobre ti e morrerás numa horrível agonia dentro de um mês.”

Dawkins supõe que em cada semana só um terço de todos os destinatários seguirá as instruções. Doravante, temos um índice semanal de replicação de 6, dos quais 4 morrem (supondo que 4 dos 6 destinatários destrói os seus cartões postais), havendo 2 sobreviventes para cada jogo de 6 cartões enviados. Cada destinatário de um cartão sobrevivente repete assim as instruções, criando dessa forma mais 2 cartões sobreviventes, e assim por diante. A “população” de cartões postais em circulação dobraria portanto a cada semana. Aliás, o mesmo seria verdadeiro se cada pessoa que recebesse tal cartão postal, enviasse dois iguais e todos eles sobrevivessem.

Dawkins salienta que, depois de 52 dobragens de população (um ano) haveria à volta de 4.000 triliões de cartões em circulação.

“Cartões postais suficientes para sufocar cada homem, mulher, e criança no mundo.”


Tabela 1. Utilizando a Nova Escala Malthusiana para demonstrar a replicação do “meme” via cartão postal
Nota: 1A-pop = 1024 pops, 1B-pop = 1024 A-pop, 1C-pop = 1024 B-pop, etc...


Depois das 52 semanas seriam 4 E-pops, o que representaria 4.503.599.627.370.496 (aproximadamente 4.500 triliões) cartões postais em circulação.


Imagem 1. Ilustração da replicação de cartões postais


Se clicar na imagem 1, verá o número de cartões postais em circulação (a verde) para as primeiras três semanas (2, 4 e 8). Assim, o número de cartões postais em circulação durante um semana corresponde claramente ao número de cartões dessa geração. Como Dawkins sugere, este número dobra a cada semana (como demonstrado na Tabela 1). Note que, não se espera, que os destinatários dos cartões postais de semanas anteriores, voltem a enviar cartões para além da sua primeira semana.

No entanto, os que enviaram os seus próprios 6 cartões postais, não estão sob nenhuma obrigação de destruir os cartões por eles recebidos. Assim, a população actual de cartões postais acumula de semana para semana. Começa-se com 2 cartões sobreviventes na primeira semana, sendo então adicionados 4 na segunda, totalizando 6, e posteriormente 8 mais serão adicionados, três semanas depois teremos uma população total de cartões igual a 14. Na semana quatro, seriam enviados 48 cartões postais (8 x 6), dos quais 32 seriam destruídos e 16 sobreviveriam. Doravante, esses 16 devem ser adicionados aos da semana três, de população igual a 14, resultando numa população total de 30 na semana quatro (14 + 16 = 30).

Uma Lei Universal da Biologia

No capítulo “Memes: os novos replicadores” Dawkins (1976) compara a biologia com a física:

“As leis de física são supostas ser verdade em todo o universo acessível. Haverá qualquer princípio na biologia que possa ter uma validade universal semelhante?”

E pergunta:

“...haverá aí qualquer princípio geral que seja válido para toda a vida?”

Dawkins declara que não sabe, mas está preparado para apostar o seu dinheiro no seguinte princípio fundamental:

“Esta é a lei pela qual toda a vida se desenvolve, pela sobrevivência diferencial das entidades replicadoras.”

Eu acredito que Dawkins está correcto, tal como Malthus quando escreveu (numa Visão Sumária, 1830) sobre as populações em termos mais matemáticos:

“A causa imediata do aumento da população é o excesso dos nascimentos acima das mortes; e o índice de aumento, ou o período de dobragem, depende da proporção do excesso de nascimentos relativamente às mortes que se estabelecem na população.”

Para completar o quadro, deve-se também referir a lei complementar (permutadas as frases de Malthus):

“A causa imediata da diminuição da população é o excesso das mortes acima dos nascimentos; e o índice de diminuição, ou o período de divisão para metade, depende da proporção do excesso das mortes relativamente aos nascimentos que se estabelecem na população.”

E mais uma vez de Uma Visão Sumária (1830), Malthus clarifica a sua ideia:

“Pode ser afirmado com segurança, portanto, que a população, quando aumenta de forma desenfreada, fá-lo numa progressão geométrica, de tal forma, que se dobra a cada vinte e cinco anos. Esta declaração, refere-se naturalmente ao resultado geral, e não a um passo intermédio da progressão. Na pratica, esta será umas vezes mais lenta, e outras mais rápida.”

Dawkins acredita que a molécula de ADN é a entidade replicadora prevalecente no planeta terra. No entanto, é possível mostrar matematicamente, que todas as populações de todos os replicadores (sim, ADN mas também bactérias, vírus, células, animais, plantas e fungos) aderem ao Princípio universal de Malthus sobre a População.

(...)

Talvez pensando no seu próprio conceito de “os genes egoístas” como “corrente de letras de ADN”, Dawkins faz a seguinte observação sobre a reprodução diferencial:

“Na competição por recursos, variantes do replicador podem surgir como mais eficientes na sua duplicação. Estes replicadores mais eficientes, tenderão a substituir seus rivais menos eficientes. É importante perceber que nenhuma destas entidades duplicadas o faz consciente ou interessadamente. Mas simplesmente acaba por acontecer, e o mundo torna-se cheio de replicadores mais eficientes.”

Dawkins conclui este capítulo com uma intrigante tentativa de definir os limites típicos pelos quais os replicadores passam pelo tempo geológico, desde o primeiro replicador à colonização de espaço. Uma vez a população de replicadores conclua a colonização do espaço, eu modelaria o progresso de tal civilização tecnológica nos termos dos níveis de Kardashev, como discutido em Drexler - Uma Visão Exponencial(1).

A Escalada do Monte Improvável. Capítulo 9 - O Robot Repetidor (Dawkins - 1996)

Replicadores e Populações

“É a natureza de um replicador gerar uma população de cópias de si próprio, e isso significa uma população de entidades que também se duplicam. Doravante a população tenderá a crescer exponencialmente até que seja limitada pela competição por recursos ou matérias-primas. Desenvolverei a ideia do crescimento exponencial de forma breve. Em resumo, a população dobra em intervalos regulares, em vez de adicionar um número constante a intervalos regulares. Isto significa que muito em breve haverá uma população muito grande de replicadores e consequentemente competição entre eles.”

A crença desse crescimento exponencial requerer uma taxa de crescimento constante, ou “a população dobrar a intervalos regulares”, é largamente sustentada. É num entanto uma falácia; um mito. Malthus foi um dos primeiros a tentar explicar o crescimento exponencial das populações, e pode ter começado esse mito. Malthus fez uso regular de taxas de crescimento constantes (através de dobragens regulares) nos seus exemplos, mas compreendeu também, claramente, que as taxas de crescimento variam (e ainda assim a população continuará a crescer exponencialmente). Estou seguro de que Dawkins está igualmente ciente disso, mas tive demasiados comentários sobre esta questão para a deixar passar em branco.

(...)

Replicação Celular

Ao discutir a antiga história evolutiva da célula eucariótica(2) de primitivas células bacterianas, Dawkins (1996) fornece um conjunto de exemplos de animais familiares formados por células eucariotas:

“Um rato é um edifício grande constituído por talvez um bilião de células. Um elefante é uma colónia de cerca de 1.000 triliões (1015) de células, e cada uma dessas células é ela própria uma colónia de bactérias.”

Ao longo de linhas semelhantes às doutros autores, Dawkins explica o poder do crescimento exponencial que se aplica dentro de cada indivíduo, pelo dobrar das suas células:

“... A forma especial de crescimento segundo a qual as coisas vivas seguem é o crescimento exponencial. Outro meio de o dizer é o de que coisas vivas crescem através de dobragens locais.

Começamos com uma única célula que é muito pequena. ...Talvez a propriedade mais notável que a célula tem é a capacidade de se dividir em duas células mais ou menos iguais a si. Sendo como a célula mãe, cada uma é capaz de se dividir em duas, formando quatro células. Cada uma das quatro, por sua vez, podem-se dobrar, fazendo oito, e assim por diante. Isto é crescimento exponencial, ou dobragem local.”

Aqui Dawkins (1996) usa a dobragem de papel como forma de explicar o poder extraordinário do crescimento exponencial:

“As pessoas que não estão acostumadas ao poder do crescimento exponencial surpreendem-se. Como prometido, perderei algum tempo nele, pois é importante. Há formas claras de o ilustrar. Se se dobrar um pedaço de papel uma vez, terá duas espessuras. Dobre-o novamente e terá quatro vezes a espessura inicial. Outra dobra e você terá um fardo de oito camadas de espessura. Mas suponha que a rigidez mecânica não seria um problema e que poderia ir dobrando sem parar, digamos cinquenta vezes. Quão espesso o fardo de papel seria então? A resposta é que seria tão espesso que ultrapassaria os limites da atmosfera terrestre e iria além da órbita de Marte.”

Voltando atrás, para a dobragem celular, Dawkins fornece uma explicação de quantas gerações de células levaria uma baleia azul para crescer:

“Da mesma forma, pela dobragem celular ao longo do desenvolvimento corporal, o número de células cresce muito rapidamente a níveis astronomicamente grandes. Uma baleia azul é feita de uns cem mil triliões (1017) de células. Mas, tal é o poder do crescimento exponencial, que só levaria cinquenta e sete gerações de células, sob condições ideais, para produzir tal monstruosidade. Por geração celular, eu quero dizer um dobramento. Lembre-se de que o número de células sobem da seguinte forma 1, 2, 4, 8, 16, 32, etc...”

Ainda bem que, ao contrário da maioria dos autores, que tenta usar uma visão geracional para explicar o crescimento exponencial, Dawkins responsavelmente evidencia um problema - não é realista usar as gerações de células para se explicar o crescimento exponencial, porque as células não são imortais:

“Este meio de calcular o número de gerações de células é na realidade não realista, porque só fornece uma figura reduzida. Supõe que, depois de cada geração de células, todas se fazem duplicar. ...Assim uma baleia azul consiste num número de linhagens de célula de comprimento diferente, construindo partes distintas da baleia. Algumas destas linhagens vão-se dividindo por mais do que as cinquenta e sete gerações de células. Outras param de se dividir antes das cinquenta e sete gerações de células.”

Assim, Dawkins (1996) explica que o seu guia naïve, a calcular quantas gerações de célula são exigidas para formar qualquer criatura, baseia-se no peso dessa:

“Um cálculo ingénuo sugere que tomaria um mínimo de quarenta e sete gerações de dobragem de células para formar um ser humano adulto e só aproximadamente dez vezes mais para fazer crescer uma baleia azul. Estas figuras estão certamente subestimadas, pelas razões que referi anteriormente.”

Dawkins está correcto ao chamar tais estimativas de ingénuas, se forem consideradas como gerações de células. No entanto, como Malthus nos ensinou há 200 anos atrás, o conceito da dobragem populacional por si só não é ingénuo. Aliás, o Modelo Malthusiano de Crescimento é o meio perfeito de modelar a dobragem da população de células (veja Células Replicadoras - Uma Visão Exponencial(3)). Além do mais, as estimativas ingénuas de Dawkins são-no unicamente porque este raciocinou tal como Darwin o fez – em termos de gerações. Se Dawkins pensasse como Malthus, veria que as suas estimativas ingénuas, estão clara e realmente próximas das estimativas genuínas da dobragem populacional:


Tabela 2. Dobragem ingénua de Gerações de células equacionadas pela dobragem Malthusiana da população
Nota: 1A-pop = 1024 pops, 1B-pop = 1024 A-pop, 1C-pop = 1024 B-pop, etc...

A Tabela 3 abaixo explica as entradas assinaladas a vermelho na Tabela 2 acima:


Tabela 3. Criaturas do exemplo de Dawkins recorrendo à replicação celular

A Unidade de Selecção

Em “O Fenótipo Estendido” (1982) Dawkins expressa claramente o seu desprezo pela ideia das populações como a unidade de selecção para a Selecção Natural:

“As populações podem durar um longo período, mas estas misturam-se constantemente com outras e perdem então a sua identidade. Estão também sujeitas à interna mudança evolutiva. A população não é uma entidade suficientemente discreta para ser uma unidade de selecção natural, não é suficientemente estável nem unitária para ser seleccionada em detrimento doutra.”

(...)

Nanotecnologia Molecular (MNT)

Dawkins aborda resumidamente o campo emergente da MNT(4), dizendo “A Nanotecnologia parece-nos muito estranha, pouco credível”. Ele conclui correctamente que o poder chave da MNT sobre os actuais métodos de construção seriam o da “multiplicação exponencial”. Sublinhando, esta poder dar em nada, ele conclui que esta “nova” tecnologia é na verdade muito “velha”, e tem vindo a ser usada pela vida (por genes) eternamente.

Interessantemente, a lei universal da biologia que Dawkins declarou em “O Rio que Saía do Éden” também se aplica a montadores e replicadores de MNT quando estes forem inventados. Será que isso fará deles seres vivos?

(...)

(1) – http://members.optusnet.com.au/exponentialist/Drexler.htm
(2) – http://pt.wikipedia.org/wiki/C%C3%A9lulas_eucari%C3%B3ticas
(3) – http://members.optusnet.com.au/exponentialist/Cells.htm
(4) – http://pt.wikipedia.org/wiki/Nanotecnologia

domingo, 4 de fevereiro de 2007

Richard Dawkins – Uma Visão Exponencial – Parte 1

Através do texto “Richard Dawkins – Uma Visão Exponencial”(1), tentarei mostrar o que está por trás da pergunta “Concorda com a despenalização da interrupção voluntária da gravidez, se realizada, por opção da mulher, nas primeiras dez semanas, em estabelecimento de saúde legalmente autorizado?”(2).

Introdução

Dawkins é um caso raro. Por um lado, ele não menciona Malthus(3) uma única vez, em qualquer dos seus livros. Por outro, Dawkins é um dos melhores representantes do Princípio Matemático da População explicado por Malthus entre 1798 e 1830. Para aqueles, com livros de Dawkins, os capítulos chave são Planeamento Familiar (Capítulo 7) de “O Gene Egoísta”, A Bomba Replicadora (Capítulo 5) de “Rio que Saía do Éden”, e O Robot Repetidor (Capítulo 9) de “A Escalada do Monte Improvável”. Neste artigo também recorro a um par de citações de “O Fenótipo Estendido”.

O Princípio da População de Malthus, é geralmente referido em termos de uma população de crescimento exponencial que esgota as suas fontes de alimentação. Populações excessivamente bem sucedidas, são finalmente postas em cheque pelos limites de crescimento de Malthus. Todas as populações são guiadas, pelo seu crescimento exponencial, para uma luta pela sobrevivência de onde só a “crise” emergirá. O crescimento populacional é constantemente controlado pelos Quatro Cavaleiros do Apocalipse, Guerra, Fome, Pestilência e Morte. Em termos Malthusianos estes são todos referidos como “reveses positivos” da população. Malthus, na segunda edição da sua dissertação, adicionou a “restrição moral” como uma alternativa mais humana. Veja-se Malthus - Uma Visão Exponencial(4).

Em “O Fenótipo Estendido” Dawkins (1982) destingue entre replicadores e veículos para replicadores (tal como ratos, seres humanos, elefantes e árvores):

“Genes são replicadores; organismos e grupos de organismos não são considerados como replicadores; são veículos em que os replicadores viajam. A selecção de Replicadores é o processo pelo qual alguns replicadores sobrevivem às custas de outros replicadores. A seleção de veículos é o processo pelo qual alguns veículos são mais bem sucedidos que outros no assegurar da sobrevivência dos seus replicadores.”

Gostaria de deixar claro ao leitor, que dum ponto de vista exponencial, não há nenhuma necessidade de distinção entre replicadores e seus veículos. O mesmo Modelo de Crescimento de Couttsian(5) aplica-se a ambos, e assim o uso do termo “replicador” como sinónimo de ambos. Talvez o replicador exponencial possa ser visto como um “povoador”, embora pessoalmente, pense que o termo “replicador” se adeqúe perfeitamente bem.

Eu também devo explicar que não tenho qualquer problema com a distinção de Dawkins no que diz respeito à Seleção Natural, para Dawkins trata-se da origem das espécies(6). No entanto, se tomarmos uma visão exponencial, então o foco está na origem das populações e não na origem das espécies. Espero que a minha abordagem exponencial explique a origem das populações.

Dawkins (1982) fornece uma definição ampla dum replicador:

“Defino um replicador como algo no universo de que são feitas cópias. Os exemplos são, uma molécula de ADN, e uma folha de papel que é fotocopiada. Replicadores podem ser classificados de duas formas. Podem ser ‘passivos’ ou ‘activos’, e seguindo esta classificação, podem ser replicadores ‘reprodutivos’ ou ‘de beco sem saída’.”

Dum ponto de vista exponencial, é suficiente dizer-se que uma população de replicadores dará origem a cópias desses mesmos replicadores. Isto leva à definição exponencial dum replicador:

“Qualquer coisa no universo que é, individual ou agregadamente, capaz de causar um evento replicativo”

Reprodutores

“A Ideia Perigosa de Darwin” por Daniel C. Dennett(7) (1995) é descrito por Dawkins como “um livro insuperavelmente brilhante”. Nele, Dennett declara a dissertação de Malthus sobre a população, como “a ideia principal” entre as ideias anteriores que levaram Darwin à sua teoria da selecção natural. Dennett relembra Malthus, o crescimento exponencial de qualquer população, leva inevitavelmente a uma rotura, no momento em que se excederem os recursos disponíveis. Dennett continua:

“Foi Malthus que salientou a inevitabilidade matemática de tal rotura em qualquer população de reprodutores a longo prazo - pessoas, animais, plantas (ou, no que diz respeito, máquinas de clonagem de marcianos, embora tais fantasias não fossem discutidas por Malthus).”

Exibindo um entendimento claro de Malthus, Dennett conclui:

“Então a situação normal para qualquer tipo de reprodutores é aquela em que uma maior descendência é produzida que aquela que se reproduzirá no futuro. Por outras palavras, é sempre tempo de rotura.”

É o uso do termo “reprodutores” por Dennett que me interessa. O problema, é que os vírus não se reproduzem, mas mesmo assim, aplica-se o Modelo de Crescimento de Couttsian a populações virais. Também, uma hipotética máquinas de clonagem de marcianos (ou qualquer máquina de von Neumann(8)) seria melhor descrita como um replicador do que um reprodutor.

Assim, acredito ser melhor adoptar a terminologia de Dawkins, e usar o termo “replicador”, em vez de “reprodutor”, e “índice de replicação” em vez de “natalidade”. Veja Replicação Viral - Uma Visão Exponencial(9).

Os Primeiros Replicadores

Na discussão sobre os primeiros replicadores (capítulo 2, “Os Replicadores” de “O Gene Egoísta” 1976, 1989), Dawkins escreve:

Então parece ter-mos chegado a uma grande população de réplicas idênticas. Mas agora, devemos mencionar uma propriedade importante de qualquer processo de cópia: não é perfeito.

Ele continua, usando a analogia com o processo de fotocópia, que tem uma longa história de más cópias. Escreve:

“Nós não sabemos quão exactas são as cópias feitas pelo replicador original. Os seus descendentes modernos, as moléculas de ADN, são surpreendentemente fieis comparadas com o mais sofisticado processo de cópia alguma vez inventado pelo ser humano, mas mesmo estes (replicadores), cometem ocasionalmente erros, e são esses erros que tornam a evolução possível.”

Nas minhas leituras relativas à evolução, costumo entrar no debate relativo ao “nível” (espécie, grupo, indivíduo, gene) a que a evolução trabalha. Algumas pessoas pensam que eles são exclusivos, outras pensam que não. Dos que pensam que não, argumentam então sobre se são concorrentes, hierárquicos, etc... De uma perspectiva exponencial, que pode ser melhor descrita como uma visão Malthusiana e Darwinista, a evolução trabalha ao nível das populações de replicadores.

Em ‘O Gene Egoísta’ (1976, 1989), Dawkins diz que “...a unidade fundamental da selecção não é a espécie, nem o grupo, nem estritamente o indivíduo. É o gene...”

Dawkins refere-se assim a todos os animais, plantas e bactérias como “máquinas de sobrevivência”. Assumindo uma visão simplificada da evolução, e da Seleção Natural em particular, eu acredito que Dawkins está certo. No entanto, de uma perspectiva Malthusiana, acredito que é válido dizer-se que todos os animais, plantas, fungos, bactérias e vírus são replicadores. Tal como o são as moléculas de ADN, células e os muito antecipados replicadores do mundo de nanotecnologia molecular(10). Mesmo formas artificiais/virtuais de vida, são replicadores.

A minha esperança para este artigo é a de que, a visão exponencial demonstrará a natureza unificadora do princípio Malthusiano da população, ao campo da biologia e ao da evolução em particular. Relembrando que a visão exponencial não diz respeito à origem das espécies, em vez disso centra-se no princípio de replicação diferencial, aplicado a todas as populações de replicadores. Assim, ignorando a Selecção Natural (e Selecção Artificial(11)) o princípio da Selecção Malthusiana é revelado. Abordarei este tema mais detalhadamente um pouco mais tarde.

O Gene Egoísta. Capítulo 7 – Planeamento Familiar. (Dawkins - 1976, 1989)

Aqui, Dawkins fornece uma excelente explicação Malthusiana sobre o crescimento da população. Ele opta igualmente pela dispensa dos factores relativos à imigração e emigração, usando para isso a população humana da Terra como um exemplo de uma população para a qual se necessita de considerar apenas a natalidade e a mortalidade:

“A humanidade está a ter crianças demais. O tamanho de população depende de quatro factores: nascimentos, mortes, imigrações e emigrações. Tomando a população mundial como um todo, imigrações e emigrações não ocorrem, e somos deixados com nascimentos e mortes. Enquanto o número médio de crianças por casal for maior do que dois futuros reprodutores, o número de bebés nascidos tenderá a aumentar ao longo dos anos a uma taxa cada vez mais acelerada. Em cada geração da população, em vez de subir numa quantia fixa, aumentara proporcionalmente ao tamanho alcançado. À medida que este tamanho populacional vai aumentando, o tamanho do incremento aumenta também. Se este tipo de crescimento não for impedido, uma população alcançará proporções astronómicas duma forma surpreendentemente rápida.”

É uma pena que Dawkins não tenha estendido a sua explicação para mostrar como os índices de replicação e mortalidade levam a um crescimento exponencial, preferindo, como fez, usar o argumento moderno do índice de substituição demográfico.

Dawkins continua então por salientar correctamente, numa linha semelhante a Malthus a “restrição moral”, de que a reprodução adiada ao longo das gerações seriam tão eficaz quanto o slogan de hoje “Pare aos Dois” dos protagonistas do Crescimento Zero da População:

“A propósito, o que às vezes não é compreendido mesmo pelas pessoas que se preocupam com os problemas da população, é desse crescimento depender tanto de quantas crianças as pessoas têm, como de quando as têm. Como as populações tendem a aumentar numa certa proporção por geração, segue que se se espaçar mais as gerações, a população crescerá por ano a uma velocidade mais lenta. Os slogans que dizem ‘Pare aos Dois’ poderiam de forma igualmente boa ser mudados papa ‘Começar aos Trinta’! Mas, em todo o caso, o crescimento acelerado da população incute sérios problemas.”

Dawkins prossegue, dando um exemplo concreto sobre a população da América Latina:

Por exemplo, a presente população da América Latina anda à volta de 300 milhões, e já muita dessa está subnutrida. Mas se a população continuasse a aumentar à presente taxa, levaria menos que 500 anos para alcançar a situação, onde as pessoas, empacotadas de pé, formariam um sólido tapete sobre a área inteira do continente. Assim seria, mesmo que assumisse-mos que fossem muito magras - uma suposição não muito irreal. Dentro de 1.000 anos eles estariam em cima dos ombros duns dos outros, em mais de um milhão em altura. Por volta dos 2.000 anos, a montanha de pessoas, viajando à velocidade de luz, teria alcançado os limites do universo conhecido.


Tabela 1. Projecção irreal da população humana dobrando (todos os 40 anos), América Latina
Nota: 1A-pop = 1024 pops, 1B-pop = 1024 A-pop, 1C-pop = 1024 B-pop, etc...

Suponha-mos uma população a dobrar constantemente num período de 40 anos (um crescimento anual de aproximadamente 1,75%, o que estava correcto em 1989 altura em que Dawkins escreveu). Usando a minha Nova Escala Malthusiana(12) poderá ver que cada linha corresponde a 10 dobros de população. Assim, cada linha representa 400 anos de população a dobrar. Portanto, entre 12 dobros e 13 dobros mais tarde (480 e 520 anos respectivamente) os 286 B-pops (300 milhões de pessoas) teriam dobrado para uma população entre 1 D-pops e 2 D-pops. Depois dos 2.000 anos de dobramento, os 286 B-pops teriam dobrado a 286 G-pops (337.649.203.525.179.632.779.264 pessoas).

Aqui, Dawkins tem a vantagem da retrospectiva sobre Malthus, e pode ver que os avanços médicos podem estimular o crescimento exponencial das populações humanas, tal como um aumento de alimentação disponível:

“Não lhe terá escapado que isto é um cálculo hipotético! Realmente não acontecerá, por algumas práticas e muito boas razões. Os nomes de algumas dessas razões são: fome, pragas, e guerras; ou, se tivermos sorte, controlo de natalidade. É inútil apelar ao avanço da ciência agrícola – ‘revoluções verdes’ e afins. Aumentos na produção de alimento podem temporariamente aliviar o problema, mas é matematicamente certo, de que eles não serão a solução a longo prazo; de facto, tal como os avanços médicos precipitaram a crise, eles podem mesmo tornar o problema pior, acelerando o índice de expansão da população. É uma verdade logicamente simples, de que, na ausência de emigração em massa para o espaço, em foguetes descolados à razão de vários milhões por segundo, a natalidade incontrolada está condenada a um aumento horrível das taxas de mortalidade. É difícil acreditar, que esta simples verdade não seja entendida por esses líderes que proíbem os seus seguidores de usarem métodos anticoncepcionais eficazes. Eles expressam uma preferência pelos métodos ‘naturais’ de limitação da população, e um método natural é exactamente o que terão. Chama-se fome.

Mas naturalmente, o desconforto que tais cálculos a longo prazo despertam, é baseado no interesse pelo bem estar futuro da nossa espécie como um todo. Os seres humanos (alguns deles) têm a previsão ciente para ver adiante as consequências desastrosas de uma população excedentária.”

Foi Malthus que, escrevendo entre 1798 e 1830, forneceu a certeza matemática a que Dawkins recorre. Dawkins é bastante correcto ao rejeitar a emigração em massa para o espaço através de foguetes como meio de evitar o inevitável (embora a possibilidade de um ou mais elevadores espaciais poderem aliviar o problema ligeiramente). É também correcto ao criticar os que se opõem às medidas anticoncepcionais - aqui Dawkins podia ter incluído Malthus. No entanto, Dawkins e Malthus estão em pleno acordo de a fome ser o carrasco final. Como Malthus escreveu na sua primeira edição de “Um Ensaio sobre O Princípio da População” (1798):

“O poder da população é tão superior ao poder do planeta terra na produção de subsistência para o homem, que a morte prematura deve de alguma forma visitar a raça humana. Os vícios da humanidade são ministros activos e capazes do despovoamento. Eles são os precursores dos grandes exércitos da destruição; e frequentemente terminam por si próprios o seu trabalho terrível. Mas fracassarão nesta guerra de extermínio, de estações doentias, epidemias, pestilência, e pragas, avançando numa impressionante frente, varrendo ao milhares e dezenas de milhares. O seu sucesso será incompleto, pois a fome, manterá inevitavelmente o seu papel do fundo, e com um golpe poderoso nivelará a população com o alimento mundial.”

(...)

O Gene Egoísta (1976, 1989 - resumido)

Dawkins discute então a resposta do mundo natural ao crescimento exponencial, e cita o exemplo do lince canadiano cuja população tem estado historicamente num estado de equilíbrio dinâmico:

“... é um facto óbvio de que as populações selvagens de animais permanecem bastante estáveis, com natalidades e mortalidades próximas uma da outra. Em muitos casos, os roedores são um exemplo famoso, onde a população flutua descontroladamente, com explosões violentas alternadas com quebras e quase extinção. Ocasionalmente o resultado é a extinção total, pelo menos numa população localizada. Às vezes, como no caso do lince canadiano - onde estimativas são obtidas dos números de peles vendidas pela Companhia da Baía do Hudson em anos sucessivos - a população parece oscilar ritmicamente. A única coisa que as populações animais não fazem é aumentar indefinidamente.”

Embora Dawkins esteja correcto ao dizer que as populações animais (ou, de facto, qualquer população) não “aumentam indefinidamente”, é também verdade que todas as populações aproveitam cada oportunidade para o fazer. Essa é a natureza de qualquer espécie de replicador. São apenas as acções de controlo dos revés Malthusianos na população que contêm a população de linces. Com o crescimento da população de linces, estas agem então como um revés Malthusiano (Morte, um dos Quatro Cavaleiros do Apocalipse) sobre várias populações de presas, cujos números então caem. Isto resulta em fome (outro dos Quatro Cavaleiros) reduzindo por sua vez a população de linces, cujos números então declinam. Uma queda na população de linces reduz os reveses nas populações de presas, cujos números sobem, e o ciclo inteiro recomeça outra vez.

No entanto, a questão central é a de essa remoção do reveses numa população, encorajar tipicamente o crescimento exponencial dessa mesma população (ou, na pior da hipóteses, diminuir o seu crescimento negativo). Como Darwin o expressa na Origem das Espécie (1859):

“Assim, podemos confiantemente afirmar, que todas as plantas e animais tendem a aumentar a sua população numa proporção geométrica, que acabarão da forma mais rápida por ocupar todo o lugar em que podem de alguma forma existir, e que essa tendência geométrica é controlada pela destruição nalgum período de vida.”

Dawkins salienta correctamente que a humanidade atingiu um estado artificial, em que muitos de nós morre simplesmente de velhice:

“Os animais selvagens quase nunca morrem de velhice: fome, doença, ou predadores alcançam-nos muito antes de eles se tornarem senis. Até há pouco tempo, isto era verdade também para o homem.”

(a continuar)


(1) – Traduzido de http://members.optusnet.com.au/exponentialist/Dawkins.htm
(2) – Pergunta do referendo de 11 de Fevereiro de 2007 sobre a IVG (Portugal)
(3) – Thomas Robert Malthus, http://pt.wikipedia.org/wiki/Thomas_Malthus
(4) – http://members.optusnet.com.au/exponentialist/Malthus.htm
(5) – http://academia.wikia.com/wiki/Couttsian_Growth_Model
(6) – http://pt.wikipedia.org/wiki/Esp%C3%A9cie
(7) – Daniel Dennett, http://en.wikipedia.org/wiki/Daniel_Dennett
(8) – John von Neumann, http://pt.wikipedia.org/wiki/John_von_Neumann
(9) – http://members.optusnet.com.au/exponentialist/Virus.htm
(10) – http://en.wikipedia.org/wiki/Molecular_nanotechnology
(11) – http://en.wikipedia.org/wiki/Artificial_selection
(12) – http://members.optusnet.com.au/exponentialist/MalthusScale.htm

domingo, 28 de janeiro de 2007

Bons Rapazes Terminam em Primeiro – Parte 1

O Dilema do Prisioneiro

Rapazes amáveis acabam em último. A frase parece ter origem no mundo do baseball, embora alguns indiquem uma origem alternativa. O biologista americano Hardin Garrett usou essa mesma frase para resumir o que pode ser chamado de “sociobiologia” ou “Egoísmo de Género”(1). É fácil de se ver a sua justeza. Se traduzirmos o significado coloquial de ‘bom rapaz’ no seu equivalente darwiniano, um rapaz amável é um indivíduo que ajuda os outros membros da sua espécie, às suas próprias custas, por deixar de transmitir os seus genes para a geração futura. Rapazes amáveis, parecem estar à partida, condenados a diminuir em número: amabilidade sofre assim uma morte darwiniana. Mas há uma outra interpretação técnica da palavra coloquial “amável”. Se adoptarmos esta outra, que não foge muito do significado coloquial, rapazes amáveis podem de facto terminar em primeiro. Esta conclusão mais optimista, é a que será abordada neste capítulo.

Lembra-se dos Grudgers do Capítulo 10(2). Tratavam-se de pássaros que se ajudavam duma forma aparentemente altruísta, mas recusavam-se a ajudar (de forma rancorosa), indivíduos que previamente se tinham recusado ajudá-los. Os Grudgers vieram a dominar a população, porque passaram mais genes a gerações futuras do que quaisquer Papalvos (que ajudaram os outros indiscriminadamente, e foram dessa forma explorado) ou Vigaristas (que tentaram cruelmente explorar todos os outros, acabado por prejudicar todos eles). A história dos Grudgers ilustra um princípio geral importante, que Robert Trivers chamou de ‘altruísmo recíproco’. Como vi-mos no exemplo do peixe limpador (pág. 186-7), altruísmo recíproco não está confinado a membros de uma única espécie. Existe em todos os relacionamentos que são chamados simbióticos – por exemplo, as formigas na ordenha do seu ‘gado’ de afídios (pág. 181). Desde que o Capítulo 10 foi escrito, o cientista político americano Roberts Axelrod (trabalhando parcialmente em colaboração com W. D. Hamilton, cujo nome deste último foi cortado de tantas páginas deste livro), levou a ideia de altruísmo recíproco a novas direcções. Foi Axelrod que definiu o significado técnico da palavra ‘amável’ a que eu aludi no parágrafo de abertura.

Axelrod, como muitos cientistas políticos, economistas, matemáticos e psicólogos, ficou fascinado por um simples jogo chamado O Dilema do Prisioneiro. É tão simples que descobri haverem homens, que apesar de serem inteligentes, não o terem compreendido de todo, pensando que teria de haver algo mais nele! Mas a sua simplicidade é enganosa. Prateleiras inteiras de bibliotecas, encontram-se dedicadas a ramificações deste jogo encantador. Muitas pessoas influentes acham que este tem a chave para o planeamento estratégico da defesa, e que deve ser estudado por forma a evitar uma terceira guerra mundial. Como biólogo, concordo com Axelrod e Hamilton, de que muitos animais selvagens e plantas estão interligados num incessante jogo do tipo do Dilema do Prisioneiro, jogado ao logo do período evolutivo.

O jogo na sua versão humana e original é jogado da seguinte maneira. Há um ‘banqueiro’, que paga pelas vitórias dos dois jogadores. Suponha que jogo contra si (embora, como veremos, ‘contra’ é precisamente o que nós não devemos ser). Existem apenas duas cartas, marcadas com COOPERA e DESERTA. Para jogar, escolhemos cada um uma carta, e colocamo-las de face para baixo em cima da mesa. De face para baixo, por forma a que nenhum de nós possa ser influenciado pela escolha do outro: na realidade, jogaremos simultaneamente. Esperaremos ansiosos para que o banqueiro vire ambas as cartas. A incerteza vem do facto da nossa recompensa depender não só da carta que jogámos (a qual temos conhecimento), mas também da do outro jogador (a qual apenas conheceremos no momento em que o banqueiro a virar).

Como existem 2x2 cartas, há quatro combinações possíveis de resultados. Para cada resultado, as nossas recompensas são as seguintes (em dólares considerando as origens norte-americanas do jogo).

Resultado I: Jogamos ambos COOPERA. O banqueiro paga a cada um de nós $300. A esta soma respeitável chama-se recompensa por cooperação mútua.
Resultado II: Jogamos ambos DESERTA. O banqueiro recebe de cada um de nós $10. Isto será chamado de punição por mútua deserção.
Resultado III: Você jogou COOPERA; eu joguei DESERTA. O banqueiro paga-me $500 (a tentação para desertar) o cobra-lhe $100 (custo do Papalvo).
Resultado IV: Você jogou DESERTA; eu joguei COOPERA. O banqueiro paga-lhe $500, e cobra-me $100.

Os resultados III e IV são obviamente simétricos: um jogador sai-se muito bem e o outro muito mal. Nos resultados I e II saímo-nos de forma igualmente boa, mas o resultado I é melhor para nós do que o II. As quantidades exactas de dinheiro não importam. Nem sequer importa quantas delas são positivas (pagamentos) e quantas, se algumas, são negativas (multas). O que interessa, para o jogo se qualificar como um verdadeiro Dilema do Prisioneiro, é a sua ordem hierárquica. A Tentação pela deserção deve ser maior que a Recompensa pela cooperação mútua, que deve por sua vez, ser maior que aquela pela deserção mútua, e maior que a do Papalvo. (Estritamente falando, há mais uma condição para que o jogo se possa qualificar-se como um verdadeiro Dilema do Prisioneiro: a média da Tentação junto com o desfecho do Papalvo, não devem exceder a Recompensa pela cooperação mútua. A razão para esta condição adicional emergirá mais tarde). Os quatro resultados estão resumidos na matriz de desfecho da Figura 1.


Figura 1 – Recompensas e punições dos vários resultados do jogo O Dilema do Prisioneiro

Agora, por quê o ‘dilema’? Para o ver, olhe para a matriz de desfecho da Figura 1, e imagine os meus pensamentos enquanto jogo contra si. Eu sei que só pode jogar duas cartas, COOPERA e DESERTA. Consideremo-las ordenadamente. Se jogou DESERTA (teremos de olhar para a coluna da direita), a melhor carta que eu poderia ter jogado seria igualmente DESERTA. Reconhecidamente teria sofrido a penalidade pela deserção mútua, mas se tivesse cooperado, teria o desfecho do Papalvo que seria muito pior. Viremo-nos agora para a outra coisa que poderia ter feito, COOPERA. Olhando para a coluna da esquerda, uma vez mais, DESERTA será a minha melhor jogada. Se ambos tivéssemos cooperado receberíamos igualmente uns bons $300. Mas se deserta-se receberia ainda mais, ou seja $500. Conclui-se assim que, sem ter em conta a carta que irá jogar, a minha melhor jogada será sempre DESERTA.

Desta forma, cheguei à conclusão lógica, de que independentemente do que faça, eu devo desertar. E você, seguindo o mesmo raciocínio, chegará à mesma conclusão. Assim sendo, quando dois jogadores racionais se encontram, optarão ambos por desertar, acabando por pagar a punição por mútua deserção. Mas cada um, sabe muito bem, que, se ao menos tivesse-mos jogado COOPERA, teríamos obtido uma recompensa relativamente alta pela cooperação mútua ($300 no nosso exemplo). Essa é a razão pela qual o jogo é chamado de dilema, pela qual parece ser tão desconcertante, e pela qual já foi proposto haver uma lei contra ele.

O termo ‘prisioneiro’ vem de um exemplo particular e imaginário. A moeda de troca, neste caso, não é em dinheiro mas em anos de prisão. Dois homens, chamados Peterson e Moriarty, estão na cadeia, suspeitos de participarem num crime. Cada prisioneiro, na sua cela separada, é convidado a trair o seu colega (DESERTA), divulgando fortes provas contra ele. O que acontece a seguir depende do que ambos irão fazer, e nenhum deles sabe o que o outro irá fazer. Se Peterson atirar as culpas inteiramente para cima de Moriarty, e por outro lado Moriarty mantiver uma história plausível por forma a guardar silêncio (cooperando com seu outrora companheiro e agora traidor), Moriarty receberá uma pesada sentença, enquanto Peterson, escapar-se-á de qualquer sentença por ter cedido à tentação de desertar. Se cada um deles trair o outro, ambos serão condenados pelo crime, mas recebem por outro lado algum crédito por terem denunciado o outro, recebendo dessa forma uma sentença pesada mas de alguma forma reduzida, como castigo pela deserção mútua. Se ambos cooperassem (um com o outro, e não com as autoridades) recusando-se a falar, não haveriam provas suficientes para os condenar pelo crime principal, acabando por receber uma sentença pequena por uma ofensa menor, a recompensa pela cooperação mútua. Embora pareça estranho chamar a uma pena de cadeia uma ‘recompensa’, seria dessa forma que os homens a veriam, se a comparassem com a alternativa de passar um período muito maior a trás das grades. Notará que, embora as ‘recompensas’ não estejam em dólares mas em anos de cadeia, as características essenciais do jogo mantêm-se (olhando para a ordem hierárquica dos quatro resultados). Se se puser no lugar de qualquer um dos prisioneiros, supondo que ambos são motivados pelo interesse pessoal e racional, e lembrando-se de que não podem conversar entre si por forma a firmarem um pacto, verá que nenhum deles terá outra escolha que não seja a de se traírem mutuamente, condenando-se cada um a uma sentença pesada.

Há alguma forma de se sair do dilema? Ambos os jogadores sabem o que seu oponente fará, eles não pode fazer melhor que desertar; mas também sabem, que se ao menos tivessem cooperado, cada um ter-se-ia saído muito melhor. Se ao menos... se ao menos... se ao menos houvesse uma forma de chegar a acordo, alguma forma de cada jogador assegurar ao outro que nele se lhe pode confiar, que não procurará a egoísta jogada do jackpot, alguma forma de policiar o acordo.

No simples jogo do Dilema do Prisioneiro, não há nenhum meio de garantir confiança. A não ser que pelo menos um dos jogadores seja um santo Papalvo, demasiado bom para este mundo, o jogo está condenado a acabar em deserção mútua com resultados paradoxalmente pobres para ambos os jogadores. Mas há outra versão do jogo. É o chamado de Dilema do Prisioneiro ‘Iterado’ ou ‘Repetido’. O jogo iterado é mais complicado, e é na sua complicação que reside a esperança.

(a continuar)

(1) – Retirado do inglês ‘selfish genery’.
(2) – Chapter 10, You scratch my back, I’ll ride on yours, The Selfish Gene by Richard Dawkins.

domingo, 21 de janeiro de 2007

Pombos e Falcões

Hoje vou tentar dar resposta a alguns dos problemas confrontados no meu “post” anterior As Raízes da Riqueza, no primeiro exemplo, em que os dois marinheiros decidem seguir a partir de uma dada altura o seu próprio caminho, dividindo as posses anteriormente comuns, são-nos evidenciados os problemas para o conjunto dos dois intervenientes. No entanto não nos é dada resposta a uma simples pergunta. Se a situação deles seria no conjunto boa, ou a melhor possível, porque razão haveriam de ficar insatisfeitos, e de onde vem essa insatisfação que muitas das vezes é contraproducente do ponto de vista global?

Para tentar responder a essa simples pergunta, vou falar do conceito EEE (Estratégica Evolucionariamente Estável) ou em inglês ESS (Evolutionary Stable Strategy), este conceito foi introduzido por um biólogo de nome Maynard Smith(1), e está intimamente relacionado com a Teoria dos Jogos. Deixarei no entanto a teoria dos jogos para outra altura, abordando hoje apenas o conceito EEE.

Uma Estratégica Evolucionariamente Estável, pode ser definida como aquela cuja maioria dos membros de uma determinada população adoptam, e que não pode por outro lado, ser melhorada por qualquer estratégia alternativa. Uma outra forma de dizer, trata-se de uma estratégia individual, a qual depende da atitude da maioria da população. Como a população consiste num grupo de indivíduos, cada um tentando maximizar o seu próprio sucesso (ponto de vista reprodutivo), a única estratégia sobrevivente será aquela, uma vez atingida, que não poderá ser ultrapassada ou melhorada por qualquer outra dum indivíduo desviante. A selecção natural irá assim penalizá-lo.

Consideremos o caso mais simples descrito por Maynard Smith’s, imaginemos que há apenas dois tipos de estratégia de conflito, numa população de duas espécies particulares de comportamento, Pombos e Falcões (sentido figurado). Todo o indivíduo ou população hipotética é classificada como Pombo ou Falcão, cujo comportamento se descreve da seguinte maneira:

Pombo: Atacam de uma forma convencional, nunca ferindo nenhum outro;
Falcão: Atacam desenfreadamente, esforçando-se o mais que podem, parando apenas quando feridos gravemente.

Os resultados dos possíveis conflitos são os seguintes:

Pombo vs. Pombo: Ameaçam-se mutuamente durante um longo período até que um deles desista, sem no entanto ficar ferido;
Pombo vs. Falcão: Pombo foge imediatamente, e assim não é ferido;
Falcão vs. Falcão: Lutam até que um deles se fira gravemente ou morra.

Nos conflitos é assumido que, não há forma de um indivíduo saber à partida se o adversário é um Pombo ou um Falcão, e que só o descobre quando o conflito tiver início. Além disso, não há a capacidade por parte dos intervenientes de manter uma memória dos conflitos ocorridos.

Agora, de uma forma arbitrária, iremos atribuir pontos aos vários intervenientes conforme o desfecho de cada conflito. A pontuação é definida da seguinte maneira:

Vitória: 50 pontos;
Desistência: 0 pontos;
Derrota por ferimentos graves: -100 Pontos;
Custo de perda de tempo (combates longos): -10 Pontos.

Este sistema de pontos deverá ser considerado como o sucesso de proliferação genética no agrupamento genético(2) dos indivíduos em conflito. Assim, para um indivíduo com uma pontuação alta, haverá no agrupamento genético uma maior quantidade dos seu genes, e consequentemente do seu tipo de comportamento.

O objectivo deste concurso não é o de saber quem ganha a quem, pois isso já sabemos, o que nos interessa saber, é, de qual das duas estratégias é a EEE. Caso uma delas o seja, é de se esperar que essa mesma estratégia evolua em detrimento da outra. No entanto, veremos que nenhuma destas estratégias é uma EEE, e para o demonstrar, teremos de considerar o cálculo da média das pontuações.

Caso a população fosse inteiramente constituída por Pombos, sempre que lutassem, nenhum deles seria ferido. Os conflitos resumir-se-iam a um conjunto de lutas ritualizadas, que terminaria com a desistência de um dos lados. Assim, o vencedor receberia 50 pontos por ter vencido, e perderia 10 relativamente ao tempo despendido, resultando numa recompensa final de 40 pontos. Por outro lado o perdedor sairia penalizado com -10 pontos. Assim em média (50% vitórias, 50% derrotas), a população geral de Pombos tem um recompensa de 1/2*(40 – 10) = 15 pontos. Assim sendo, a população de Pombos sai-se com um saldo razoável.

Suponha-mos agora, que devido a uma mutação, surge um Falcão na população de Pombos. Como ele será o único Falcão nas redondezas, irá ganhar todos os conflitos, sendo recompensado em 50 pontos para cada um deles, e esta será a sua recompensa média. O Falcão gozará de um enorme sucesso dentro da população de Pombos, pelo que, os seus genes se espalharão rapidamente.

Mas agora, com o aumento de Falcões na população, os rivais encontrados por um Falcão não serão todos Pombos. E levando ao extremo, se a população de Falcões se espalhar de uma forma tão bem sucedida, a população total será constituída apenas por Falcões, sendo todas as lutas do tipo Falcão vs. Falcão. Neste caso, a população de Falcões terá como recompensa 1/2*(50 – 100) = -25 pontos. Se agora invertermos o cenário, e considerar-mos o surgimento de um Pombo na população de Falcões, será evidente que ele perderá todos os conflitos, mas não sairá deles ferido nem perderá qualquer tempo. A sua recompensa será de 0 pontos, superior aos -25 dos Falcões, espalhando deste modo os seus genes pela população.

Na realidade não se chegará a nenhum dos extremos anteriormente considerados, nem a população terá grandes oscilações entre Pombos e Falcões, haverá por isso um rácio estável entre ambos. Para os pontos que definimos, teremos um rácio de 5/12 Pombos e de 7/12 Falcões(3). Assim, neste exemplo, a EEE resume-se a um rácio de 5:7 (Pombos/Falcões), significando que, aqueles que aumentarem a sua população relativamente a este equilíbrio serão prejudicados. O mesmo acontece no rácio 50:50 relativamente ao tipo de sexo, em qualquer dos casos, as oscilações em torno deles não serão acentuadas.



Figura 1. Ponto de equilíbrio EEE


Superficialmente, isto pode parecer como selecção de grupos, porque nos faz pensar numa população em equilíbrio, que retorna a este sempre que perturbada. Mas o conceito EEE é muito mais subtil. Não tem nada a ver com grupos mais bem sucedidos que outros. Isto pode ser facilmente ilustrado pelo nosso exemplo anterior. A recompensa de cada indivíduo segundo o rácio determinado anteriormente de 5:7, será de 6,25, independentemente de se tratar de um Pombo ou de um Falcão. Mas 6,25 é muito menos que 15, relativos a uma população constituída só por Pombos. Se todos, simplesmente concordassem em ser Pombos, cada indivíduo sairia beneficiado. Pela simples selecção de grupos, qualquer grupo no qual todos os elementos concordassem em ser Pombos, seria muito mais bem sucedido que qualquer outro cujo rácio fosse o da EEE (em abono da verdade, uma conspiração de Pombos não é a mais vantajosa, um grupo com 5/6(4) de Pombos e 1/6 de Falcões, em média tem uma recompensa de 16,67 superior a 15).

Segundo a teoria da selecção de grupo, a população prevista seria uma constituída apenas por Pombos, visto o grupo que contém apenas 5/12 de Pombos ter uma recompensa muito inferior. Mas o problemas com as conspirações, mesmo aquelas que são vantajosas para todos, é o de estarem vulneráveis a abusos. É verdade que todos se saem melhor num grupo de todos Pombos, do que noutro em equilíbrio (EEE). Mas infelizmente, numa conspiração de Pombos, um único Falcão sai-se tão bem, que nada pode impedir a evolução destes. A conspiração está assim condenada a ser quebrada pela traição interna. Uma estratégia EEE é estável, não porque seja particularmente boa para os indivíduos, mas simplesmente por ser imune a traições no grupo em que se estabelece.

É no entanto, possível para humanos, assinar pactos, ou entrar em conspirações em que todos beneficiam, mesmo que não seja estável do ponto de vista da EEE. Mas isto será apenas possível porque cada indivíduo recorre à sua previdência conscenciosa, e através dela compreende que é do seu próprio interesse obedecer às regras do pacto. Mas mesmo neste tipo de pactos, existe o perigo constante, de que os indivíduos venham a ganhar muito mais no curto prazo quebrando essas regras, o que faz com que a tentação seja irresistível.

Talvez o melhor exemplo seja o da fixação de preços. É do interesse de todos os gasolineiros, que seja estabelecido um preço artificialmente alto. Alianças de acordo de fixação de preços, cuja estimação é do melhor interesse de todos, pode sobreviver por longos períodos. Mas mesmo assim, é comum haver alguém que ceda à tentação de baixar o preço. Imediatamente todos o seguem na sua acção (mercado de livre concorrência). Infelizmente para o resto de nós, a consciência dos gasolineiros volta a surgir na forma de um novo pacto de fixação de preços. Assim, mesmo no caso dos homens, seres com uma consciência previdente, pactos ou conspirações baseados nos interesses comuns a longo prazo, vacilam constantemente, estando sempre à beira do colapso devido à traição interna. Nos animais selvagens, controlados pela luta dos genes, é ainda mais difícil encontrar formas; pelas quais o grupo beneficie, ou em que estratégias conspirativas evoluam. Deveremos esperar encontrar EEE em todo o lado.

O estado de equilíbrio no agrupamento genético representado pelo rácio do exemplo anterior, é tecnicamente descrito como polimorfismo. No entanto, matematicamente, um equilíbrio do tipo EEE pode ser atingido sem um polimorfismo. Se cada indivíduo for capaz de se comportar quer como Pombo quer como Falcão, um equilíbrio do tipo EEE poderá ser conseguido, numa população em que todos os indivíduos têm a mesma probabilidade de se comportarem como Pombos, ou seja 5/12. Isto significa que todos os indivíduos, em cada conflito que participam, escolhem um tipo de comportamento de uma forma aleatória, segundo a razão de 5:7 (Pombos/Falcões). É importante que a decisão seja realmente aleatória, sem que à partida se saiba qual o comportamento do oponente.

Esta história é um pouco naïve. Mas apesar da sua simplicidade, ajuda-nos a compreender as possíveis razões, da dificuldade de existência de uma sociedade que satisfizesse John Ruskin. No seu Simples Exemplo, quando as posses dos dois marinheiro são divididas, tal pode ter resultado da insatisfação de uma das partes como é dito, e essa insatisfação vem do facto de essa mesma parte ter mais a ganhar com a “traição” do acordo vigente, embora no conjunto e na globalidade ambos saiam a perder. Poder-se-ia dizer que, como houve uma espécie de traição de um acordo de amizade, poderia haver também uma outra, relativamente à obrigatoriedade da caução, por forma a que o trabalho em dívida não tivesse de ser recompensado na sua totalidade ou na forma previamente acordada. Mas aqui há uma diferença (ou não), visto todas as leis, garantirem a sua aplicabilidade através de um mecanismo de represálias normalmente de custo superior ao do seu cumprimento, pois caso contrário sofrerá do mesmo mal que qualquer outro acordo meramente tácito.

No segundo exemplo, constituído por três homens em vez de dois, é-nos dito para se supor que não existe nenhuma comunicação entre os dois homens que mantêm a sua função de agricultores. Ora como vimos, este pressuposto coloca esses mesmos dois homens numa posição bastante fragilizada, pela simples razão de que o transportador sabe à partida qual o comportamento destes, podendo fazer o papel de Falcão se assim o entender, e não haverá empatia possível, que por si só o impeça de tal. A recompensa é evidente e descrita logo de seguida, a aquisição de todas as propriedades e posterior escravização dos seus anteriores proprietários. Nada mais que a quebra de uma situação mais vantajosa para todos, pela simples razão de não se tratar de um equilíbrio EEE.

A “riqueza comercial” referida por John Ruskin, nada mais é que a concretização dos interesses individuais às custas da frustração constante de qualquer estado de providência, toda a oportunidade imediata é aproveitada, sem qualquer consideração pelo bem comum, pois este carece de garantias e de imposições, algo sempre muito complicado de se instaurar e ainda mais de se manter. Pode-se dizer que existem dois tipos de equilíbrio, um forçado, que favorece o grupo como um todo, e outro natural, que favorece o indivíduo como elemento isolado (EEE). As oscilações entre um equilíbrio e outro são previsíveis, pelo simples facto, extremamente contraditório, do homem ser antes de qualquer outra coisa um indivíduo, cujos interesses se sobrepões a quaisquer outros, como sejam os sociais. É o papel da civilização, tentar conciliar a natureza humana com o bem social, e fazer dos dois algo indistinguível.

(1) – John Maynard Smith – http://en.wikipedia.org/wiki/John_Maynard_Smith
(2) – Do inglês Gene Pool
(3) – 50.x – 25.(1 – x) = 15.x + 0.(1 – x) <=> x = 25/60 = 5/12
(4) – (d/dx)[(1 – x).[50.x – 25.(1 – x)] + x.[15.x + 0.(1 – x)]] = 0 <=> x = 100/120 = 5/6

Bibliografia: The Selfish Gene – Richard Dawkins

domingo, 14 de janeiro de 2007

As Raizes da Riqueza por John Ruskin - 1860

John Ruskin


A resposta que será dada por qualquer economista político comum às sentenças contidas no capítulo anterior(1), em poucas palavras é a seguinte:

“É sem dúvida verdade que certos benefícios de natureza geral podem ser obtidos pelo desenvolvimento de afectos sociais. Mas os economistas políticos nunca consideraram ou consideram, levar em consideração os benefícios de natureza geral. A nossa ciência é simplesmente a ciência de ficar rico. Longe de ser falaciosa ou visionária, verifica-se por experiência ser efectiva. As pessoas que seguem os seus preceitos ficam realmente ricas, e as pessoas que os desobedecem ficam pobres. Todo o capitalista adquiriu a sua fortuna seguindo as conhecidas leis desta ciência, e aumenta diariamente o seu capital através da sua aplicação. É um exercício vão emitir truques de lógica, contra a força de factos bem sucedidos. Todo o homem de negócios sabe por experiência como o dinheiro é ganho e como é perdido.”

Peço desculpa. Homens de negócio sabem realmente como conseguem adquirir o seu dinheiro, ou como, ocasionalmente o perdem. Jogando um jogo há muito praticado, estão familiarizados com as chances das suas cartas, e podem correctamente explicar os seus ganhos e percas. Mas eles não sabem quem mantém a banca da sala de jogo, que outros jogos podem estar a ser jogados com as mesmas cartas, nem que outros ganhos e percas, longe nas ruas obscuras, são essencialmente dependentes dos seus dentro das salas iluminadas. Aprenderam poucas, e apenas poucas, das leis da economia mercantil; mas nenhuma das da economia política.

Ricos precisam de Pobres

Antes de mais, o que é notável e curioso, é que os homens de negócio raramente sabem o significado da palavra “riqueza”. Pelo menos, se sabem, não admitem nos seus raciocínios tratar-se de uma palavra relativa, implicando o seu oposto “pobreza” como a palavra “norte” implica o seu oposto “sul”. O Homem quase constantemente fala e escreve como se as riquezas fossem absolutas, e fosse possível, seguindo certas regras científicas, todos serem ricos. Enquanto os ricos são um poder como o da electricidade, agindo apenas através de desigualdades ou negações desse poder. A força da moeda presente no seu bolso depende completamente da sua falta no bolso do seu semelhante. Se ele a não quiser, ser-lhe-á inútil para si; o grau de poder que possui depende precisamente da necessidade e desejo que ele tiver por ela, - e a arte de se tornar rico, no senso comum economista mercantil, é igualmente e necessariamente a arte em manter o seu semelhante pobre.

Não me contento nesta matéria (e raramente em qualquer outra), pelos termos aceites. Mas desejo que o leitor claramente e profundamente compreenda a diferença entre as duas economias, às quais os termos “Política” e “Mercantil” não podem, de forma não precipitada ser associados.

Economia Política

Economia política (a economia do estado, ou do cidadão) consiste simplesmente na produção, preservação, e distribuição, de coisas úteis e aprazíveis em alturas e locais bem definidos. O lavrador que corta o seu feno na altura certa; o carpinteiro naval, que prega as suas cavilhas nos locais certos; o construtor que assenta tijolos de forma bem ordenada, a dona de casa que limpa a mobília na sala, e limita o desperdício na sua cozinha; a cantora que disciplina e nunca sobrecarrega a sua voz: são todos economistas políticos no verdadeiro e final sentido do termo; adicionando continuamente valor à riqueza e bem estar à nação que eles amam.

Economia Mercantil

Mas a economia mercantil, a economia da “penalidade” ou do “pagamento”, significa a acumulação, nas mãos de indivíduos, de legal ou moral direito a, ou de poder sobre o trabalho dos outros; implicando precisamente cada uma das exigências, tanta pobreza ou dívida de um lado como riqueza ou direito doutro.

(...)

Impacto da Desigualdade

O estabelecimento de tal desigualdade não pode ser evidenciada no abstracto, quer nas vantagens ou desvantagens para a nação. A presunção absurda e precipitada de que essas desigualdades são necessariamente vantajosas, tem a sua raiz nas falácias populares sobre o tema da economia política. Como lei eterna e inevitável relativa a este tema, é a de que o benefício da desigualdade depende, primeiramente, dos métodos segundo os quais tal é atingido, e, secundariamente, do propósito segundo o qual é implementada. Desigualdade em riqueza, injustamente estabelecida, tem indubitavelmente ferido a nação onde existe durante o seu estabelecimento; e, impõe prejuízos ainda maiores durante a sua existência. Mas em contrapartida, desigualdades de riqueza justamente estabelecidas, beneficiam a nação no decurso do seu estabelecimento; e, nobremente usadas, ajudam ainda mais durante a sua existência. É o mesmo que dizer, ao longo de toda a população activa e bem governada, as várias capacidades dos indivíduos, testadas através do seu exercício e especialização a várias necessidades, geram resultados desiguais mas harmoniosos, recebendo recompensas e autoridade de acordo com a sua classe e serviço; enquanto, na população inactiva e mal governada, os graus de decadência e as vitórias de conspirações criam o seu próprio sistema grosseiro de subjugação e prosperidade; e substituem assim, pela desigualdade harmoniosa, a dominação desigual e a crise, da culpa e desgraça.

Dinheiro como Sangue

A circulação de riqueza numa nação assemelha-se à do sangue num corpo animal. Existe um impulso na corrente que vem da alegria das emoções ou do exercício saudável; e outro que vem da infelicidade ou da doença. Existe um fluxo no corpo cheio da calor e vida; e outro que redunda em putrefacção.

A analogia sustenta-se ao mais pequeno pormenor. Assim como a determinação local de sangue doente implica uma degradação da saúde geral do sistema, todas as acções locais mórbidas dos ricos terão consequência final no enfraquecimento dos recursos do corpo político.

Saúde ou Doença

O modo segundo o qual se chega à analogia anterior, pode ser entendida examinando-se um ou dois exemplos do desenvolvimento da riqueza nas mais simples circunstancias possíveis.

Simples Exemplo

Suponha-mos dois marinheiros deixados numa praia deserta, e obrigados a manterem-se através do seu próprio trabalhos ao longo de anos.

Se ambos mantiverem a sua saúde, e trabalharem regularmente amigavelmente um com o outro, poderão construir para eles uma casa cómoda, e com o tempo vir a possuir uma quantidade de terra cultivada, juntos terão várias reservas para uso futuro. Todas estas coisas serão verdadeiras riquezas ou pobrezas; e, supondo que ambos os homens trabalharam de forma igualmente árdua, terão dessa forma igual direito à partilha ou uso do que fizeram. A sua política económica consiste basicamente na cuidada preservação e justa distribuição dessas possessões. Talvez, no entanto, após algum tempo um ou outro poderão ficar insatisfeitos com os resultados da sua agricultura comum; e podem em consequência concordar em dividir a terra que possuem em duas partes iguais, para que cada um possa agora trabalhar no seu próprio campo e viver dele. Suponha-mos agora que após esta mudança se ter concretizado, um deles adoece, e fica incapacitado de trabalhar a sua terra num período crítico – digamos na sementeira ou na colheita.

Ele irá naturalmente pedir ao outro para semear ou colher por ele.

O seu companheiro poderá dizer, com toda a justiça, “Eu irei fazer esse trabalho por ti, mas tens de prometer fazer o mesmo por mim noutra altura. Eu irei contar quantas horas perco no teu terreno, e deverás assinar uma promessa de trabalho pelo mesmo número de horas no meu terreno, sempre que precisar da tua ajuda, e tu a poderes dar”.

Suponha-mos agora que o inabilitado continua doente, e por várias razões ao longo de vários anos, necessitando da ajuda do outro, assinando em cada evento uma caução para – trabalhar assim que estiver habilitado, às ordens do seu companheiro, pelo mesmo número de horas que o outro lhe disponibilizou. Qual será a posição dos dois homens quando o inválido estiver apto a executar o seu trabalho?

Considerada como uma cidade, ou um estado, eles estarão mais pobres do que estariam de outra forma: pobres pela eliminação do trabalho que o homem doente teria produzido nesse período. O seu amigo pode talvez ter trabalhado arduamente devido à maior necessidade, mas no fim a sua própria terra e propriedade sofreram pelo retirar do seu tempo e propósito por ela; e assim a propriedade conjunta dos dois homens será certamente menor do que seria se ambos se mantivessem saudáveis.

Mas a relação entre eles é ela própria significativamente alterada. O homem doente penhorou não só o seu trabalho por alguns anos, mas provavelmente esgotou também a sua reserva acumulada, e terá em consequência por algum tempo, de depender do outro para comer, pela qual pode apenas pagar ou recompensá-lo penhorando ainda mais o seu trabalho.

Supondo que as cauções escritas são totalmente válidas (entre nações civilizadas a sua validade é assegurada por leis), a pessoa que trabalhou até agora para os dois, pode, se assim o escolher, descansar completamente, e passar o seu tempo na ociosidade, não apenas forçando o seu companheiro a amortizar todos os acordos em que entrou, mas também agravando a sua dívida por trabalho futuro, numa quantidade arbitrária, pela comida que lhe é dada como adiantamento.

Pode até não haver a menor ilegalidade (no sentido comum da palavra) no acordo; mas se um estranho chegasse à costa nesta época avançada da sua economia política, ele encontraria um homem comercialmente rico, e outro comercialmente pobre. Ele viria, talvez com grande surpresa, um, passando os seus dias em completo ócio; enquanto outro, trabalhando por dois, e vivendo na escassez e na esperança de num período distante recuperar a sua independência.

Riqueza Mercantil reduz a Riqueza Total

Este, é claro, um exemplo de uma entre muitas outras formas da desigualdade de posse ser estabelecida entre diferentes pessoas, dando origem a formas Mercantis de Riqueza e Pobreza. No caso descrito anteriormente, um dos homens logo no início, pode deliberadamente ter escolhido o ócio, e ter penhorado a sua vida pela tranquilidade presente; ou pode ter gerido erradamente a sua terra, e ter sido compelido a recorrer ao seu vizinho por comida e ajuda, empenhando o seu futuro trabalho por ela. Mas o que eu quero que o leitor perceba realmente, é o facto, comum a um largo número de casos deste tipo, que o estabelecimento da riqueza mercantil que consiste no direito sobre o trabalho, significa a diminuição política da riqueza real que consiste na posse substancial.

Outro Exemplo

tomemos outro exemplo, mais consistente com o decorrer normal dos negócios. Suponha que três homens, em vez de dois, formam uma república isolada, e sentem-se forçados a se separarem por forma a cultivarem diferentes áreas de terra a longas distâncias umas das outras ao longo da costa; cada estado realizará um tipo diferente de produção, e cada um precisará mais ou menos dos materiais produzidos pelos outros. Suponha que o terceiro homem, por forma a poupar o tempo dos outros três, encarrega-se simplesmente de supervisionar a transferencia de bens comuns de uma quinta para outra; na condição de receber uma remuneração suficiente na forma de quota de todas as parcelas transportadas, ou de qualquer outra parcela recebida em troca.

Se este transportador ou moço de recados, trouxer sempre de um estado para outro o que é primeiramente necessário, no momento certo, as operações dos outro dois agricultores seguirão prósperas, e o maior resultado possível na produção, ou riqueza, será atingido pela pequena comunidade. Mas suponha que nenhuma comunicação entre os proprietários rurais seja possível, excepto através do agente transportador; e após um certo período de tempo, este agente, vendo o decorrer da agricultura de cada homem, retém os artigos cuja a entrega lhe foi confiada, até um período de grande necessidade, quer dum lado quer doutro, e depois pede em troca tudo o que o desesperado agricultor pode dispor noutro tipo de produtos; é fácil de ver que através de uma observação sagaz das oportunidades, ele pode fazer posse regular da maior parte dos produtos em excesso vindos de ambos os estados, e por fim, depois de alguns anos de severa provação ou escassez, adquire ambas as terras, e manterá os anteriores proprietários com seus trabalhadores ou servos.

Isto seria um caso de riqueza comercial adquirido nos exactos princípios da economia política moderna. Mas mais significativo do que no primeiro exemplo, neste é evidente que a riqueza do Estado, ou dos três homens considerados como uma sociedade, é colectivamente menor do que aquela que se teria conseguido se o mercador se tivesse contentado com o saldo justo. As acções dos dois agricultores foram restringidas ao máximo; e as limitações ininterruptas do abastecimento de bens necessários nos momentos críticos, junto com a desmoralização para o trabalho, devido ao prolongamento de uma luta pela mera existência, sem qualquer sentimento de ganho, deve, ter diminuído seriamente os resultados do seu trabalho, e a quantidade de bens finalmente acumulados nas mãos do mercador não terão de forma alguma o valor daqueles conseguidos caso tivesse sido honesto, estes teriam dessa forma enchido imediatamente os armazéns dos agricultores e do próprio.

Riqueza Pessoal pode ser o Resultado do Bem ou do Mal

A grande questão, é portanto, respeitante não só a vantagem, mas do mesmo modo à quantidade, de riqueza nacional, resumindo-se finalmente a uma justiça abstracta. É impossível concluir, para qualquer quantidade de riqueza adquirida, se significa um mal ou um bem para a nação em que se insere, meramente pelo facto de sua existência. O seu valor real depende do valor moral que lhe é associado, tal como de certa forma uma quantidade matemática depende do sinal algébrico que lhe é associado. Qualquer acumulação de riqueza comercial pode ser consequência, por uma lado, de uma indústria justa, de novas fontes de energia, ou do engenho produtivo; ou, por outro lado, pode ser indicativo dum luxo mortal, duma tirania implacável, ou dum sofisma nocivo. Alguns tesouros estão carregados de lágrimas humanas, como uma doentia colheita atacada por uma chuvada prematura; e algum do ouro é mais brilhante à luz do sol do que o é em substância.

E note que estes não são meros atributos patéticos ou morais das riquezas, que o colector de riquezas, se assim o escolher, pode desprezar; eles são com certeza, atributos materiais das riquezas, que depreciam ou valorizam incalculavelmente, o valor monetário do montante em questão. Uma certa quantidade de dinheiro é o resultado de acções que o geraram, —um outro montante, de acções aniquiladas, —de valor igual a dez vezes tanto ao da reunião deste último; tais foram as fortes mãos paralisadas, como se tivessem sido entorpecidas por beladonas: tantas coragens desfeitas, tantas operações produtivas impedidas; estas e outras falsas direcções dadas ao trabalho, e uma falsa imagem de prosperidade estabelecida, representada nas planícies de Dura, cravadas com fornalhas sete vezes aquecidas. O que parece ser riqueza pode na verdade ser um indicativo dourado de uma extensa ruína; um punhado de moedas recolhido da praia por um mal intencionado rebocador retiradas do navio iludido; um grupo de acompanhantes de campo vestidos de trapos retirados das vestes de apresentáveis soldados mortos; campos de argila para venda, onde serão juntamente enterrados o cidadão e o estranho.

Compre Barato, Venda Caro

E portanto, a ideia de que diferentes direcções podem ser dadas no adquirir de riqueza, independentemente da consideração moral das suas fontes, ou que qualquer lei técnica ou geral de compra e ganho pode ser estabelecida como prática nacional, é talvez a mais insolentemente fútil de todas as que enganaram os homens pelos seus vícios. Até agora quanto sei, não há registo histórico de algo tão intelectualmente vergonhoso como a moderna ideia descrita pelo seguinte texto comercial, "Compra no mercado mais barato e vende no mais caro", e que não representa, ou sob qualquer circunstâncias pode representar, um princípio aceitável de economia nacional. Compre no mercado mais barato? — Sim; mas o que fez dele um mercado barato? O carvão pode ser barato por derivar de madeiras de telhado depois de um fogo, e tijolos podem ser baratos nas suas ruas depois que um terremoto; mas fogo e terremotos não podem ser benefícios nacionais. Venda no mais caro? — Sim, verdade; mas o que fez dele um mercado caro? Vendeu bem o seu pão hoje; foi a um homem moribundo que lhe deu a sua última moeda por ele, e nunca necessitará mais de pão, ou a um homem rico, que comprará a sua quinta às custas da sua cabeça; ou a um soldado a caminho do seu banco onde você depositou a sua fortuna para o saquear?

Nenhuma destas coisas poderá saber à partida. Apenas uma poderá: nomeadamente, se o seu negócio é justo e de confiança, que é tudo o que precisa de saber relativamente a ele; claro, ter feito a sua parte, levando por fim a um mundo onde não haverá pilhagens ou morte. E assim, toda a questão relativa a estes assuntos, difunde-se no fim, nas grandes questões da justiça (...)

Foi demostrado que o principal valor e virtude do dinheiro consiste no seu poder sobre os seres humanos; este, sem esse poder, torna grandes posses materiais inúteis, e para alguém possuidor de tal poder, comparativamente desnecessário. Mas o poder sobre seres humanos, é conseguido por outros meios que não o dinheiro. Como disse há algumas páginas atrás, o poder do dinheiro é sempre imperfeito e duvidoso; há muitas coisas que não podem ser alcançadas com ele. Muitas alegrias podem ser dadas aos homens que não podem ser compradas com ouro, e muitas fidelidades se podem encontrar que não podem ser recompensadas com ele.

Ouro Invisível

Suficientemente banal, — o leitor pensa. Sim: mas não é tão banal assim, — desejava que fosse, — neste poder moral, bastante inescrutável e imensurável que possa ser, há um valor monetário tão real como aquele representado por dinheiro bem mais concreto. A mão de um homem pode estar plena de ouro invisível, e a sua vaga, ou aperto, conseguirão mais que a de outro com um volumoso monte de ouro. Este ouro invisível, não necessariamente se diminui com o gasto. Economistas políticos farão bem em lhe tomar atenção um dia, embora não lhe possam tirar medidas.

Mas além disso. Desde que a essência de riqueza consiste na sua autoridade sobre os homens, se a sua riqueza aparente ou nominal desvanecer nesse poder, fracassará na sua essência; aliás, cessará de ser riqueza de todo. Ultimamente não tem parecido em Inglaterra, que a nossa autoridade sobre os homens seja absoluta(2). Os servos mostram alguma disposição em investir libertinamente para cima, sob a impressão de que os seus salários não são regularmente pagados. Devemos prever infortúnio a qualquer propriedade a cujo proprietário tal lhe tenha acontecido dia sim dia não na sua sala de visitas.

Assim, o poder da nossa riqueza parece limitado no que respeita ao conforto dos seus servos, não menos do que à sua quietude. As pessoas na cozinha aparecem mal vestidas, sórdidas, meio esfomeadas. Não se consegue deixar de pensar que as riquezas do Statu quo, devem ser de uma característica muito teórica e documental.

As Verdadeiras Raízes da Riqueza

Finalmente. Como a essência da riqueza consiste no seu poder sobre os homens, não se conclui que com o nobre e o crescente número de pessoas sobre os quais este poder cai, maior será a riqueza? Talvez possa parecer depois de alguma consideração, que são elas, as pessoas, a riqueza —que estes pedaços de ouro com os quais nós temos o hábito de os guiar, são, de facto, nada mais que um tipo de arreio ou armadilha bizantinos, muito resplandecentes e belos aos olhos de um bárbaro, com os quais nós freamos as criaturas; mas se estas mesmas criaturas podessem ser guiadas sem o incómodo e o tinir da bizantinice nas suas bocas e orelhas, talvez elas podessem ser mais valiosas do que os seus freios. Aliás, pode ser descoberto que as verdadeiras raízes da riqueza são vermelhas —e não de Pedra, mas de Carne —talvez o resultado final de toda a riqueza esteja na produção tanta quanto possível de criaturas alegres de olhos brilhantes, peitos cheios, e de corações felizes. A nossa riqueza moderna, penso eu, tem antes uma tendência no sentido oposto; —a maioria dos economistas políticos parecem considerar as multidões de criaturas humanas não conducente a riqueza, ou no melhor dos casos, conducentes a ela na forma de olhos sombrios e de peitos apertados.

Não obstante, está em aberto, repito, a questão séria, que deixo à ponderação do leitor, se, entre a indústria nacional, as Almas de boa qualidade, em última instancia, não podem dirigir uma outra bem mais lucrativa? Mais do que isso, num tempo distante e inimaginável, eu posso mesmo imaginar que a Inglaterra atirará todos os pensamentos possessivos de riqueza de volta às nações bárbaras de onde estes primeiramente surgiram; e isso, enquanto as areias do rio Indo e as pedras de Golconda, sobrecarregam os cestos do cavalo, ou cintilam no turbante do escravo, ela, como uma mãe cristã, pode por fim alcançar os tesouros e as virtudes de um comum Pagão, e ser capaz de levar adiante os seus Filhos, dizendo—

"Estas são as MINHAS Jóias."(3)


(1) The Roots Of Honour, John Ruskin - http://pt.wikipedia.org/wiki/John_Ruskin
(2)
Em 1857 dá-se a revolta dos Sipais - http://pt.wikipedia.org/wiki/Revolta_dos_sipais
(3)
Dito pela singela Cornélia sobre os seus filhos – Tibério Graco